All posts filed under “Design engineering

Design with Intent presentation from Persuasive 2008

EDIT: I’ve now added the audio! Thanks everyone for the suggestions on how best to do it; the audio is hosted on this site rather than the Internet Archive as the buffering seemed to stall a bit too much. Let me know if you have any problems.

I’ve put my presentation from Persuasive 2008 on SlideShare, – because of the visual style it really needs to be listened to, or viewed alongside the text (below, or in the comments when viewing it on the SlideShare site). Alternatively, just download it [PPT, 11.6 Mb] – it comes with the notes.

Read More

One-way turn of the screw

One-way screw

One-way screws, such as the above (image from Designing Against Vandalism, ed. Jane Sykes, The Design Council, London, 1979) are an interesting alternative to the usual array of tamper-proof ‘security fasteners’ (which usually require a special tool to fit and remove). There’s a very interesting illustrated listing of different systems here.

A fastener requiring a special tool is effectively addressing the “Access, use or occupation based on user characteristics” target behaviour – and is functionally equivalent to a ‘what you have’ security system such as a padlock, except that anyone can look at almost any engineering catalogue and buy whatever special tools are needed to undo most security fasteners, pretty cheaply and easily, whereas it’s still a bit more difficult to obtain padlock master keys.

However, this kind of one-way clutch head screw, which can be tightened with a normal flat screwdriver, but is very difficult to undo using any tool (without destroying it) can be thought of as addressing a slightly different target behaviour: this is “No access, use or occupation, in a specific manner, by any user”. Even if the original installer wants to undo the screw, he or she can’t do it without destroying it (e.g. drilling it out). A few of the other systems illustrated on the Security Fasteners website also have this property:

Image from Securityfasteners.netImage from Securityfasteners.netImage from Securityfasteners.netImage from Securityfasteners.net

I’m particularly intrigued by the Shear Nuts and No Go enclosures (last two images above) – these two types effectively self-destruct/render themselves permanent as they are fixed into place. Something about this step-change in affordance fascinates me, but I’m not sure why exactly; it’s a similar idea to a computer program deleting itself, or Claude Shannon’s ‘Beautiful Machine’ existing only to switch itself off.

A step further would be a fastener or other device which (intentionally) destroys itself if the wrong tool (by implication an unauthorised user) tries to open/undo it, but which will undo perfectly well if the correct tool is used – along the lines of the cryptex in the Da Vinci Code, just as an ATM will retain a card if the wrong PIN is entered three times: it’s both tamper-evident and limits access. What other cryptex-style measures are there designed into products and systems?

Making users more efficient: Design for sustainable behaviour

International Journal of Sustainable Engineering I’m pleased to say that a paper I wrote earlier this year has been accepted by the International Journal of Sustainable Engineering, a new journal based at Loughborough University. The publishers (Taylor & Francis) allow authors to post a preprint* version online, so here it is.

Making the user more efficient: Design for sustainable behaviour [PDF, 160kb] is a brief review of approaches to designing products and systems which could shape or change users’ behaviour in an environmentally friendly way; if you’ve followed this blog, there’s probably little new in it, but it’s (hopefully) a useful summary. (At present that PDF is hosted on this website, but once Brunel allows me access to deposit papers in its institutional repository, BURA, I’ll change the above link. UPDATED: Changed link 2nd May)

Abstract: User behaviour is a significant determinant of a product’s environmental impact; while engineering advances permit increased efficiency of product operation, the user’s decisions and habits ultimately have a major effect on the energy or other resources used by the product. There is thus a need to change users’ behaviour. A range of design techniques developed in diverse contexts suggest opportunities for engineers, designers and other stakeholders working in the field of sustainable innovation to affect users’ behaviour at the point of interaction with the product or system, in effect ‘making the user more efficient’.

Approaches to changing users’ behaviour from a number of fields are reviewed and discussed, including: strategic design of affordances and behaviour-shaping constraints to control or affect energy or other resource-using interactions; the use of different kinds of feedback and persuasive technology techniques to encourage or guide users to reduce their environmental impact; and context-based systems which use feedback to adjust their behaviour to run at optimum efficiency and reduce the opportunity for user-affected inefficiency. Example implementations in the sustainable engineering and ecodesign field are suggested and discussed.

Keywords: ecodesign; sustainability; managing use; managing consumption;
behaviour change; sustainable innovation; persuasive technology

Until it appears in the journal (probably towards the end of 2008) I’m not sure what the guidance is on referencing, but something like Lockton, D., Harrison, D.J., Stanton, N.A. (2008) ‘Making the user more efficient: Design for sustainable behaviour’, To appear in: International Journal of Sustainable Engineering (forthcoming) is probably about right.

*Required disclaimer:

This is a preprint of an article whose final and definitive form will be published in the International Journal of Sustainable Engineering. © 2008 Taylor & Francis; International Journal of Sustainable Engineering is available online at: http://journalsonline.tandf.co.uk/

Towards a Design with Intent ‘Method’ – v.0.1

As mentioned a while back, I’ve been trying to find a way to classify the numerous ‘Design with Intent’ and architectures of control examples that have been examined on this site, and suggested by readers. Since that post, my approach has shifted slightly to look at what the intent is behind each example, and hence develop a kind of ‘method’ for suggesting ‘solutions’ to ‘problems’, based on analysing hundreds of examples. I’d hesitate to call it a suggestion algorithm quite yet, but it does, in a very very rudimentary way, borrow certain ideas from TRIZ*. Below is a tentative, v.0.1 example of the kind of thought process that a ‘designer’ might be led through by using the DwI Method. I’ve deliberately chosen an common example where the usual architectures of control-type ‘solutions’ are pretty objectionable. Other examples will follow.

General view of the method diagram v.0.1

Basics of the DwI Method, v.0.1

1. Assuming you have a ‘problem’ involving the interaction between one of more users, and a product, system or environment (hereafter, the system), the first stage is to express what your intended target behaviour is. What do you actually want to achieve?

2. Attempt to describe your intended target behaviour in terms of one of the general target behaviours for the interaction, listed in the table below. (This is, of course, very much a rough work in progress at present, and these will undoubtedly change and be added to.) Your intended target behaviour may seem to map to more than one general target behaviour: this may mean that you actually have two ‘problems’ to solve.

General target behaviours v.0.1

3. You’re presented with a set of mechanisms – loosely categorised as physical, psychological, economic, legal or structural – which, it’s suggested, could be applied to achieve the general target behaviour, and thus your intended target behaviour. Some mechanisms have a narrow focus – dealing specifically with the interaction between the user and the system – and some are much wider in scope – looking outside the immediate interaction. Different mechanisms can be combined, of course: the idea here is to inspire ‘solutions’ to your ‘problem’ rather than actually specify them.

The mechanisms, illustrative v.0.1

 

An example

This example is one that I’ve covered extensively on this blog: the most common ‘solutions’ are, generally, very unfriendly, but it’s clear to most of us that the ‘wider scope’ mechanisms are, ultimately, more desirable.

Original photo by David Basanta
Sleeping on a bench in Hyde Park, London. Photo by David Basanta

Introduction

A number of benches in a city-centre park are occupied overnight or during parts of the day by homeless people. The city council/authorities (‘they’) decide that this is a problem: they don’t want homeless people sleeping on the benches in the park. Expressed differently, their intended target behaviour is no homeless people sleeping on the benches.

So, which of the general target behaviours is closest to this?

Currently the list (disclaimer: v.0.1, will change a lot, letter allocations are not significant) is:

A1:  Access, use or occupation based on user characteristics
A2:  Access, use or occupation based on user behaviour
B:   No access, use or occupation, in a specific manner, by any user
C:   User provided with functionality only when environmental criteria satisfied
D:   Separate flows and occupation; users have no influence on each other
E:   Interaction between users or groups of users
F:   No user-created blockages or congestion caused by multiple users
G:   Controlled rate of flow or passage of users
H:   User follows process or path
I:    User pays the maximum price which still results in a sale

While we might think the ‘discriminatory’ implications of A1 and A2 are relevant here given our assumptions about the authorities’ motives, in fact ‘they’ probably don’t want anyone sleeping on the benches, regardless of whether he or she’s actually homeless, just having a lunchtime nap before returning to a corner office at Goldman Sachs, or anywhere in between. They don’t mind someone sitting on the bench (grudgingly, that would seem to be its purpose), as long as it’s not for too long (that’s another ‘problem’, though with very similar ‘solutions’), but they don’t want anyone sleeping on it. It’s not exactly the same problem as preventing anyone lying down (we might imagine a bright light or loudspeaker positioned over the bench, which allows people to lie down but makes it difficult to sleep), but the problems, and most solutions, are very close.

So it turns out that B, ‘No access, use or occupation, in a specific manner, by any user’, best matches the intended target behaviour in this case:

General Target Behaviour close-up, v.0.1

From mechanisms to ‘solutions’

Looking at the diagram (PDF, 25k, or click image below), a number of possible mechanisms are suggested to achieve this target behaviour. (Again, a disclaimer: this is very much work in progress, and many mechanisms are missing at this stage.) There are physical, psychological, economic, legal and structural mechanisms, some with a narrow focus, and some much wider in scope.

Category B preview, v.0.1

I’ll try to pick out and discuss a few mechanisms – physical, psychological and structural (leaving out the legal and economic for the moment) – to demonstrate how they can be applied in the context of the bench example, but first it’s important to note two things:

  • Different mechanisms can of course be combined to produce solutions: e.g. legal mechanisms would need some kind of surveillance, either human or technological, to enforce; a ‘stick‘ approach along with a ‘carrot’ may be more effective than simply one or the other. So a fine for interacting with the system (i.e. sleeping on the bench) would probably have more effect if combined with making the alternative more attractive, e.g. providing somewhere else for people to sleep.
  • None of these mechanisms is an actual ‘solution’ to the ‘problem’ directly, and even if applied rigorously, the actual effectiveness in terms of physically forcing, psychologically encouraging, or otherwise enforcing the intended target behaviour is not guaranteed. Users are not mechanical components; nor are they all rational economically. Your results will vary.
  • The most obvious physical mechanism for addressing the issue is the placing of material – to interrupt the surface of the bench, or perhaps even to cause injury (usually not done deliberately with park benches, but surely done, at least in the sense of conditioning the user not to repeat the interactions, with some pigeon spikes, barbed wire, anti-climb and various anti-sit spikes).

    Mechanisms close-up, v.0.1

    Interrupting the surface of the bench is usually done by adding central armrests (which do at least serve another function in addition), as illustrated here:

    New anti-homeless bench being installed at Richmond Station

    Belson Georgetown Bench
    A new bench with armrests being installed at Richmond Station, just as London Overground takes over from Silverlink; and the Belson Georgetown Bench, “Redesigned to face contemporary urban realities, this bench comes standard with a centre arm to discourage overnight stays in its comfortable embrace.”

    Of course, it is possible to sleep on a bench with central armrests, but it’s certainly discouraging, as the Belson quote suggests.

    Sleeping over armrests on bench, photo by Rick Abbott
    Photo by Rick Abbott

    Placing of material could equally be subtractive rather than additive – so interrupting the surface might also suggest removing elements to prevent or discourage sleeping. This could be in the form of removing every (say) third section of a bench, thus making the remaining length too short to lie down on properly (this has been done in some airport lounges), making the benches shorter altogether, or even separating the seats into ‘single-occupancy benches’ – which would seem to be suggested by the spatial mechanism:

    Short bench - image from Yumiko Hayakawa Single occupancy benches - photo by Ville Tikkanen
    “A man tries to sleep on a deliberately shortened bench at the park” – photo from this excellent article by Yumiko Hayakawa discussing anti-homeless measures in Tokyo; ‘Single-occupancy benches’ in Helsinki – photo by Ville Tikkanen

    Indeed, simply narrowing the bench (making a kind of perch), and/or removing the backrest from a bench which already has central armrests, so that someone can’t even lean back to doze, would also count in terms of removing material.

    Mechanisms close-up, v.0.1

    Designs suggested by the orientation of material mechanisms are also fairly common – most often, a simply angled seat surface, as used on many bus-stop perches or these benches:

    Angled bench - photo from Yumiko Hayakawa
    “Can’t Lie Down, Can’t Lean Back – A man has a hard time getting a break on this partitioned, forward-leaning bench at Tokyo’s Ueno Onshi park”. Photo from Yumiko Hayakawa’s article.
    Bench by Joscelyn Bingham
    The ‘Lean Seat’ by Joscelyn Bingham

    Curved surfaces, both convex and concave, can also be employed:

    Curved bench - photo from Yumiko Hayakawa Curved bench - photo from PhatalbertConvex surface tubular bench in Tokyo – photo from Yumiko Hayakawa’s article; Concave surface bus shelter perch in Shanghai – photo by Albert Sun

    And curvature can be combined with the use of armrests (and height – which suggests that spatial might also be expanded to include something like “dimensional change to alter distance between elements of system”) to create something like the ‘Oxford Cornmarket montrosity’, which might prevent people sleeping on it, but certainly doesn’t stop people occupying it in a way the designers didn’t intend:

    Monstrosity, Oxford Cornmarket

    Monstrosity in use, Oxford Cornmarket
    The ‘benches’ in Oxford’s Cornmarket Street, discussed here and here. Second photo by Stephanie Jenkins

    Looking at some of the other relevant physical mechanisms, it’s worth noting that change of environmental characteristic – ‘local temperature change’ – also finds an expression in the convex Tokyo bench pictured above – as Yumiko Hayakawa notes in the original article:

    The hard curved surface of this stainless-steel bench, too hot in summer, too cold in winter, repels all but one visitor to Ikebukuro West Park.

    We might also think of positioning a street lamp right above a bench – to make it took bright to sleep there easily at night – as a similar tactic in this vein, ‘local illumination change’.

    What about the other relevant physical mechanisms? Change of material characteristic could mean a bench that deforms in some way when someone lies on it, or maybe has an uncomfortable surface texture (nails?). But both of these would probably preclude the bench’s use for sitting, in addition to sleeping. Movement or oscillation could suggest a bench which is balanced somehow so that it requires the user’s feet to be on the ground, in a normal sitting position, to keep it stable, and which would fall over (extra degree of freedom introduced) when someone tried to lie down on it, or maybe a bench which is sited on a turntable continually rotating, or a vibrating base, so that the user’s feet on the ground are again needed for stabilising, and someone lying down would fall off. None of these is an especially realistic ‘solution’, but would all address the ‘problem’ even if simultaneously introducing others.

    (At this point, we might consider that if the ‘problem’ mainly occurs at night, we might want a bench that only becomes un-sleepable on – or unusable – at night. This would be best addressed by general target behaviour C, ‘User provided with functionality only when environmental criteria satisfied’ – many of the suggested mechanisms will be similar, but with conditional elements to them – if it is dark, or after a certain time, the bench might automatically retract into the ground, or become uncomfortable, if it weren’t already.)

    As noted on the diagram (PDF, 25k), I’ve (so far) had a bit of a mental blind-spot in coming up with wider-scope physical mechanisms to address this general target behaviour. The only sensible ones so far relate to applying the placing of material on the approach to the system, so in this case, it might mean putting the bench on an island surrounded by mud, water or spikes and so on, which doesn’t really seem useful. This wider-scope line-of-thinking needs much further development for some types of mechanisms, although it’s fairly obvious where it relates to making an alternative system more attractive.

    Mechanisms close-up, v.0.1
    Narrow-scope psychological mechanisms

    Turning to psychological mechanisms, with both narrow and wider scopes, the emphasis pretty much comes down to a ‘stick’ or ‘carrot’ approach: either scare/warn/otherwise put off the user from sleeping on the bench, or make an alternative more attractive/available. It’s about creating unattractive perceived affordances, perhaps, where the physical mechanisms are about removing real affordances.

    From the narrow scope point-of-view, some of the applicable psychological ‘solutions’ might include: ‘warning’ potential sleepers off with signage or colour schemes (not that this would do much; it’s more likely to provoke amusement, as in the photo below); making benches which look uncomfortable (whether or not they are); paying(?) scary or unattractive other ‘users’ to hang around the bench to scare people away (which perhaps defeats the object slightly); or, probably most likely, using overt surveillance of the bench, by humans or cameras, which brings in considerations of the legal mechanisms too (and maybe economic, in the form of fines). Another aspect of surveillance is making the (unwanted) interaction visible to other users – using the pressure of social norms to ‘shame’ people into not doing something (positioning the sink outside the bathroom, in a kind of ante-room visible to others, is a good example), but it’s difficult to see how to apply this to the bench example – even if the bench is, say, positioned where lots of people will see the user sleeping on it, the pressure to vacate it is pretty low. This is a kind of ‘public’ feedback; feedback itself is an extremely important psychological mechanism in interaction design, but seems (from my research so far) to be much more applicable to some of the other general target behaviours.

    Sign in bushes, photo from Tacky Fabulous Orlando Mechanisms close-up, v.0.1
    A genuine sign in Orlando, via Boing Boing; and some applicable wider scope psychological mechanisms.

    The wider scope psychological mechanisms are much more positive – indeed, more positive than anything else so far in this example. Here, the aim is to make alternative systems – i.e. an alternative to sleeping on the park bench, whatever it might be – more attractive. This is where this sort of thing comes into play:

    Sean Godsell, House in a Park Sean Godsell, House in a Park
    Sean Godsell’s ‘House in a Park’, a bench that folds out into a rudimentary shelter (above) and (below) Bus Shelter House, which “converts into an emergency overnight accommodation. The bench lifts to reveal a woven steel mattress and the advertising hoarding is modified to act as a dispenser of blankets, food, and water.”
    Sean Godsell, Bus Shelter House

    Note that at this level, the alternative systems themselves are attractive (more attractive than sleeping on the park bench) by simply fulfilling users’ needs rather than any psychological ‘tricks’. There is a lesson there.

    ‘Guerrilla’ responses by users frustrated at heavy-handed anti-user measures don’t directly have a place in the DwI Method, at least as currently constituted, but in this case, for example, providing temporary cardboard seating (/sleeping benches) or even parts that fit over benches with central armrests to permit sleeping once again, as Crosbie Fitch suggests, are worth thinking about:

    Perhaps also, for each anti-sit seat design, one could come up with cardboard add-ons that re-enable long-term seating and recumbence. These could be labelled “Temporary Seat Repairs”, “Protective Seat Covers”, “Citizen City Seats”, or something far wittier.

    Mechanisms close-up, v.0.1

    It’s the structural mechanisms which suggest the more large-scale ‘solutions’, from provision of alternative systems (as in the Sean Godsell examples above) to actually removing the need for anyone to sleep rough. Ultimately, of course, that’s a better goal than any of the above – anything discussed in this article – but it’s not really a ‘solution’, rather a desirable aim, or even an intended target behaviour in itself, addressing a social issue rather than a ‘design’ one. Addressing the ‘disease’ rather than merely disguising the symptoms is surely preferable in the long-term.

    Alternatively, some cities have simply removed benches altogether where there is a ‘homeless problem…

    Benches removed - photo by Fredo Alvarez
    Benches stripped in Washington DC – “A small homeless population [had grown] there within the past few months”. photo by Fredo Alvarez.

    …’removal of system entirely‘ being the structural mechanism there: doing absolutely nothing to help the homeless users, and in the process removing the benches for everyone who uses the park.

    Conclusions

    The choice of such a negative example for demonstrating this very early version of the Design With Intent Method – where almost all the ‘solutions’ suggested are anti-user and generally unfriendly – reflects, pretty much, where my ‘architectures of control’ research came from in the first place. Most of the examples posted on the site over the past couple of years have generally been about stopping users doing something, forcing them to do something they don’t want to do, or tricking them into doing something against their own best interests – certainly more than have been about more positive efforts to help and guide users.

    I thought that using the DwI Method initially to see if I could ‘get inside the head’ (possibly) of the ‘they’ who implement this kind of disciplinary architecture would be a useful insight, before applying the method to something more user-friendly and worthwhile – which willl be the next task.

     

    *As ‘Silverman’ cautioned before, the aim must not be to remove the use of engineering/design intuition – most creative people would not respond well to that anyway – but primarily to inspire possible solutions.

    Do you really need to print that?

    Do you really need to print that?
    Do you really need to print that?

    This is not difficult to do, once you know how. Of course, it’s not terribly useful, since a) most people don’t read the display on a printer unless an error occurs, or b) you’re only likely to see it once you’ve already sent something to print.

    Is this kind of very, very weak persuasion – actually worthwhile? From a user’s point of view, it’s less intrusive than, say, a dialogue box that asks “Are you sure you want to print that? Think of the environment” every time you try to print something (which would become deeply irritating for many users), but when applied thoughtfully, as (in a different area of paper consumption) in Pete Kazanjy’s These Come From Trees initiative, or even in various e-mail footers* (below), there may actually be some worthwhile influence on user behaviour. It’s not ‘micropersuasion’ in Steve Rubel’s sense, exactly, but there is some commonality.

    Please consider the environment

    I’m thinking that addressing the choices users make when they decide to print (or not print) a document or email could be an interesting specific example to investigate as part of my research, once I get to the stage of user trials. How effective are the different strategies in actually reducing paper/energy/toner/fuser/ink consumption and waste generation? Would better use of ‘Printer-friendly’ style sheets for webpages save a lot of unnecessary reprints due to cut-off words and broken layouts? Should, say, two pages per sheet become the default when a dicument goes above a certain number of pages? Should users be warned if widows (not so much orphans) are going to increase the number of sheets needed, or should the leading be automatically adjusted (by default) to prevent this? What happens if we make it easier to avoid printing banner ads and other junk? What happens if we make the paper tray smaller so the user is reminded of just how much paper he/she is getting through? What happens if we include a display showing the cost (financially) of the toner/ink, paper and electricity so far each day, or for each user? What happens if we ration paper for each user and allow him or her to ‘trade’ with other users? What happens if we give users a ‘reward’ for reaching targets of reducing printer usage, month-on-month? And so on. (The HP MOPy Fish – cited in B J Fogg’s Persuasive Technology – is an example of the opposite intention: a system designed to encourage users to print more, by rewarding them.)

    Printing is an interesting area, since it allows the possibility of testing out both software and hardware tactics for causing behaviour change, which I’m keen to do.

    Slanty design

    Library of Congress, Main Reading Room
    The Main Reading Room, Library of Congress. Image from CIRLA.

    In this article from Communications of the ACM from January 2007, Russell Beale uses the term slanty design to describe “design that purposely reduces aspects of functionality or usability”:

    It originated from an apocryphal story that some desks in the US Library of Congress in Washington, DC, are angled down toward the patron, with a glass panel over the wood, so when papers are being viewed, nothing harmful (like coffee cups, food and ink pens) can be put on top of them. This makes them less usable (from a user-centric point of view) but much more appropriate for their overall purpose.

    [S]lanty design is useful when the system must address wider goals than the user might have, when, say, they wish to do something that in the grander scheme of things is less than desirable.

    New Pig cigarette binCone cup
    The angled lid on this cigarette bin prevents butts being placed on top; the cone shape of cup subtly discourages users from leaving it on the table.

    We’ve looked before on this site at a couple of literally ‘slanty’ examples – notably, cigarette bins with angled lids and paper cone cups (above) – and indeed “the common technique of architects to use inclined planes to prevent people from leaving things, such as coffee cups, on flat spaces” is noted on the Designweenie blog here – but in his article, Beale expands the scope of the term to encompass interfaces or interaction methods designed to prevent or discourage certain user behaviour, for strategic reasons: in essence, what I’ve tried to corral under the heading ‘architectures of control‘ for the last few years, but with a different way of arriving at the idea:

    We need more than usability to make things work properly. Design is (or should be) a conversation between users and design experts and between desired outcomes and unwanted side effects… [U]ser-centred design is grounded in the user’s current behavior, which is often less than optimal.

    Slanty design incorporates the broader message, making it difficult for users to do unwanted things, as well as easy to do wanted things. Designers need to design for user non-goals – the things users do not want to do or should not be able to do even if they want to [my emphases]. If usability is about making it easy for users to do what they must do, then we need to have anti-usability as well well, making it difficult for them to do the things we may not want them to do.

    He gives the example of Gmail (below), where Google has (or had – the process is apprently not so difficult now) made it difficult for users to delete email – “Because Google uses your body of email to mine for information it uses to target the ads it delivers to generate revenue; indeed, deleting it would be detrimental to the service” but that in fact, this strategy might be beneficial for the user – “By providing a large amount of storage space for free, Gmail reduces any resource pressure, and by making the deletion process difficult it tries to re-educate us to a new way of operating, which also happens to achieve Google’s own wider business goals.” This is an interesting way of looking at it, and somewhat reminscent of the debate on deleting an Amazon or eBay account – see also Victor Lombardi’s commentary on the where the balance lies.

    How to delete an email in Gmail

    However, from my point of view, if there’s one thing which has become very clear from investigating architectures of control in products, systems and environments, it’s that the two goals Beale mentions – “things users do not want to do” and things users “should not be able to do” – only coincide in a few cases, and with a few products, and a few types of user. Most poka-yoke examples would seem to be a good fit, as would many of the design methods for making it easier to save energy on which my PhD is focusing, but outside these areas, there are an awful lot of examples where, in general, the goal of the user conflicts with the goal of the designer/manufacturer/service provider/regulator/authority, and it’s the user’s ability which is sacrificed in order to enforce or encourage behaviour in line with what the ‘other’ party wants. “No-one wakes up in the morning wanting to do less with his or her stuff,” as Cory Doctorow puts it.

    Beale does recognise that conflicts may occur – “identify wider goals being pursued by other stakeholders, including where they conflict with individual goals” – and that an attempt should be made to resolve them, but – personally – I think an emphasis on using ‘slanty’ techniques to assist the user (and assist the ‘other party’, whether directly or simply through improving customer satisfaction/recommendation) would be a better direction for ‘slanty design’ to orient itself.

    Slanty carousel - image by Russell Beale
    “Slanty-designed baggage carousel. Sloping floor keeps the area clear”. From ‘Slanty Design’ article by Russell Beale.

    Indeed, it is this aim of helping individual users while also helping the supersystem (and actually using a slant, in fact) which informs a great suggestion on which Beale elaborates, airport baggage carousels with a slanted floor (above):

    The scrum of trolleys around a typical [carousel] makes it practically impossible to grab a bag when it finally emerges. A number of approaches have been tried. Big signs… a boundary line… a wide strip of brightly coloured floor tiles…

    My slanty design would put a ramp of about 30 degrees extending two meters or so up toward the belt… It would be uncomfortable to stand on, and trolleys would not stay there easily, tending to roll off backward or at least be awkward to handle. I might also add a small dip that would catch the front wheels, making it even more difficult to get the trolley or any other wheeled baggage on it in the first place, but not enough to trip up a person.

    If I was being really slanty, I’d also incorporate 2 cm-high bristles in the surface, making it a real pain for the trolleys on it and not too comfy for the passengers to stay there either. Much easier for people to remain (with their trolleys) on the flat floor than negotiate my awkward hill. We’d retain the space we need, yet we could manage the short dash forward, up the hill, to grab our bags, then return to our trolleys, clearing the way for the next baggage-hungry passenger.

    There are some very interesting ideas embodied in this example – I’m not sure that using bristles on such a slope would be especially easy for wheelchair users, but the overall idea of helping both the individual user, and the collective (and probably the airport authority too: reducing passenger frustration and necessity for supervision of the carousel), is very much something which this kind of design, carefully thought out, can bring about.